
NEW CONCEPTS IN PLASTICITY AND DEFORMATION 
TAEORY 

(NOVYE PREDSTAVLENIIA V PLASTICHNOSTI I 

DEFORMATSIONNAIA TEORIIA) 

PMM Vo1.23, No.4, 1959, pp. 722-731 

V. D. KLIUSHNIKOV 

(Moscow) 

(Received 29 January 1959) 

This paper contains a comparative analysis of some conclusions of three 
new theories of plasticity, (Batdorf and Budiansky’s slip theory [l 1; 

Sanders’ theory based on linear loading functions [ 2 I and the theory 

proposed in [ 3 I 1 and a model representation in [ 4 1 . 

As it is well known, the stress-strain relationships in the slip theory 

are quite cumbersome because of the extreme complexity of these relation- 

ships in a general case. Thus, the majority of the authors dealing with 

these topics limit themselves to qualitative investigations. As far as 

the exact analysis is concerned, outside of the conclusions of a quite 
general nature, some information was obtained only for the case of simple 

tension (compression) and subsequent application of a small tensile (com- 

pressive) additional load and twist. It was also clarified that in the 

case of simple tension (compression) near the point of the additional 

load in the “axial shear stress” plane, the plasticity curve forms an 

angle (plasticity angle). The sides of this angle are always tangent to 
the initial yield curve (von Mises ellipse). It turned out that if the 

additional load is directed into the exterior (in relation to the origin 

of the coordinate axes) angle between the tangents to the initial yield 

surface from the point of an additional load, then the ratio Ci of the 

shear stress increment to the shear strain increment is independent of 

the direction of the additional load inside of this angle. Besides, it 

coincides with the value given by an ordinary deformation theory 

(0.1) 

(E and G are the elasticity modul i; E, is the secant modulus). If the 
additional load is directed into the interior angle (inside of the plasti- 

city angle) then Ci = G. Finally, if the additional load is outside of 

these two angles, then ‘i varies smoothly between the two values, even for 
the case of twist (orthogonal load). ci is determined by (0.1) with 3G 
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replaced by 3C/2. 

This information, however, is not sufficient to establish the objectives 

stated in this paper. Since the procurement of more complete information 

based on these relationships is connected with considerable mathematical 

difficulties, we make below a simplifying assumption, which will permit 

to obtain the required results. in particular those indicated above, by 

elementary means. The second of the theories, the Sanders theory, was in- 

vestigated only in its general form, and as far as we know, no stress- 

strain relationships were obtained for this theory. These relationships 

are given below for plane loading paths. 

As usually, the stress vector P, and the stress increment vector BP, 

the strain vector 3, the plastic strain vector 3” and the plastic strain 

increment vector 63pwill denote the vectors whose components are elements 

of the corresponding deviation vectors. Elements with same subscripts of 

these deviation vectors are assumed to orientate themselves along the 

same unit vectors of the vector space. Since in the sequel we will con- 

sider only plane loading paths, it will be convenient to use the follow- 
ing notation. The direction of the additional load will be characterized 

by an angle a, formed by the vector 8P and the unit vector q and perpen- 
dicular to the unit vector p, 

q=6p/I6pI=pSp/8~cosar, P=Plp 

p=IPJ=I/Cs:,. SC3 = I6P I = Jhs;j. 3p= ,3+J-~* 
(O-2) 

The magnitude and the position of the plasticity angle (differential 

element of the yield curve) at point P, is determined by angles 4 and $I 
which form its sides with the unit vector q. 

1. Stress-strain relationships proposed in 13 I for plane 
loading paths. The basis of the assumptions accepted in r-31 constitutes 
the assumptions regarding the relationships between the angle of plasti- 

city at the point of additional loading and the vectors * and 63". It 

is assmed that these relationships are independent of the position of 

a rigidly connected system u8P, 63p, plasticity angle n in the loading 

plane. Further there is the assumption regarding the locally minimal 

character of the variations of the yield curve along infinitesimally small 

segments of the loading paths. If along the3P-pcurve for simple load- 

ing the following condition is satisfied 

'$= A(cp+ $sin29) (1.1) 

then the following is obtained: 



1032 V.D. Kliushnikov 

63 p = A {pap [(a + y) + siniiti ‘) sin y] + 

+ pap [(a + F) - sin ,‘,“,i ‘) COST]} for --cp<aG'J, (1.2) 

63’ = A {p&P [(~ -+ Q) + siniLz ‘) sin (CL + ‘p - +)] _t 

+ P% [i, + 9) - “” Jzsi ‘) COS (CL + ‘p - +)I} for a 3 J, 

The quantities 6 and !'/ in these expressions are arbitrary; thus, a 

possibility exists for an investigation of the relationships between the 

theory and experiments for various modes of variations of the plasticity 

angle during the loading process. 

2. Derivation of stress-strain relationships for the Sanders 
theory for the .case of plane loading paths, ‘Ile basic assumptions 
in the Sanders theory for the plane loading can be formulated as follows: 

(a) For an arbitrary state P, arrived at by a given loading process, 
there exists a closed curve (yield curve) which is an envelope of a plane 

family of straight lines (lines of plasticity). This curve is such that 

an arbitrary path from P in the interior of this curve or along this 
curve (and only such path) results only nn an elastic deformation of the 

material. 

(b) In the process of plastic deformations plasticity lines can move 

only away from the origin of the coordinate axes in a translatory motion 

(parallel to themselves). Besides, only those lines are moving, which 

have a comnon point with the stress vector. 

(c) Jluring translatory motion of a given plasticity line by a magni- 
tude dh the plastic strain increases by an amount 

d3f = 0 (h) dh n f2.l) 

where h is the distance from the origin to the given line, n is a unit 
vectorof the normal to this line in the loading plane. 

(d) The total plastic strainBar, produced by the additional load SP 
is the sum of the plastic strains d3,r contributed by the displacements 
of the individual plasticity lines. 

(e) Volume movement of is elastic. 

IAt now an additional loading 6P act from some state P. This incre- 
mental load causes to move such plasticity lines bb, which form an angle 

h with a unit vector q, within the limits (Fig. 1): 
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Fig. 1. 

-+<A .<a for -&a<,< 

-VGA<+ for a>$ (2.2) 

From Fig. 1 we find 

h = pcosh 

dh = 6s sin (a - k), n = pcosh-qsinA (2.3) 

Because of the assumptions made above, the total plastic strain in- 

crement is 

where 

83~=60 i cD(h)sin(a--_,)[pcos‘h--qsinh]dh 

--o 

(2.4) 

(2.5) 

The assumption (b) supplies a construction method for the plasticity 

angles for any point of an arbitrary loading path (method of’external 
tangents), (Fig. 2). This method also permits the determination of the 

angles q5 and $J which appear in (2.4) and (2.5). ‘Ihe unknown function Cp 

can be determined experimentally from a simple loading. If we put 

CD (h) = CD (p cos A) = A = const. G-6) 

then from (2.4) and (2.5) for simple loading 

‘p=k a =l /*Tc, 6~ = dp 

1ENJl= 8)3Pl= 63” 

on the ~Q+I curve the same conditions as accepted in the previous section 
[ formula (1. l)] must be satisfied. 

For a general case of loading we have 
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63P = 9 {[sina(A f- $sin2h)+$cosacos2‘h]p+ 

+ [+ sin a cos 2h + cos a (h - f sin 2h)] q}ET (2.7) 

If we now utilize the first formula in (0.2) and substitute the limits 

of integration, taking into account (2.5), we arrive at the same expressions 

as shown in (1.2). In this case, however, $5 and $ are completely determined 
by the method of external tangents. 

Fig. 2. 

3. Derivation of the stress-strain relationships for the 
slip theory based on a plane body model. 'Ihe assumptions of this 
theory are usually formulated in terms of plasticity of microstructure 

of the material. HOwever, these assumptions permit of interpretations 

applicable for continuous media in the following \;ay. 

(a) Plastic deformation in the neighborhood of a given point in a 

material is a consequence of irreversible slips along some planes passing 

through this point. 

(b) ‘Ihe irreversible slips occur only in those planes which contain at 

least one direction along which the component of the tangential stress r, 

of a given plane exceeds some constant value, r s, and also exceeds all 
its previous values. 

(c) Along every such direction in a given plane plastic slip yOP occurs, 

whose magnitude depends on r only. 

(d) The total plastic strain in the neighborhood of some point of a 

material is the sum of all strains of the irreversible slips along all 

directions in all planes. 

(e) Volume deformation is elastic. 

Fklow we will investigate the consequences of this system when applied 
to a lplane bodyn model. nPlane body” model means a material which deforms 
in the plane of the application of the load only. The slips mentioned in 
(a) can, therefore, occur only along the planes perpendicular to the 
planes of application of the loads. For a given material the stress-strain 
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state is determined by the stress and strain components (ux, u ,TC , e =, 

'{! 
y 1 with respect to some fixed axes x and y in the plane gf $plic- 

a zon?f the load. The vector stress and strain components of deviation, 

in this case, are determined by 

U) = f t Jx - %), 3,x = Ex -- $ (E, -+ Ey) =$ (Ex - Ey) 

s,, = ou- $(%+“y)=$(J~,-?x), 3~~=Ey-+((Es+Ey)= f(Ey-E,) 

s,, = s,, = T’xy, 3x, = 3,x = -&y (3.1) 

If for the three-dimensional material the stress-strain vector space 

is in general nine-dimensional, then for the material considered here it 

is four-dimensional. Moreover, since the following must be satisfied for 
any loading 

s,, + s,, == 0, sx, = &x7 3,X $ 3,, = 0, 3x11= 3,, (3.2) 

the loading and deformation paths lie in the same two-dimensional plane. 

‘lhe vectors P and 3, therefore, must be determined by the two fixed unit 
vectors of this two dimensional plane, for the vectors P and 3, are deter- 

mined by the ssme rules as for a three-dimensional body. Let k , k,, 
k, be unit normal vectors of this space. From the definition anh (3.2) 

k,, 

we have 
(3.3) 

P = Sxxkl + Syykz + Sxyk, + S,k, = &x (k, - k3) + S,, (k, + k,) 

3 = 3x&, i- 3,ykz + 3,,ka -I- 3yxk, = 3zz (k, - k,) + 3x, (k, + k4) 

let k, - k, = \/2 i, k, + k, = d2 j. It is easy to see that the vectors 
i and j are orthogonal unit vectors, and we have 

P = 0 V,i + s,, jl , 3 = l/Z [%,i + 3,,jI (3.4) 

Precisely in the same manner the components of the deviator vectors 
SP, 3~ and 63~ are expressed by i and j . 

Let a sample made out of this material be in some state of stress. In 

this case the following shear stress occurs at some angle o to the r- 
direct ion 

T= $(cr,-ua,)sin20+r,, cos 20 = S,, sin 2@ + S,, cos 26.1 (3.5) 

Along the directions where r exceeds a certain constant value I and 
all its preceding values in accordance with (bJ, we will have plastic slip 

TOP = F (9 (3.6) 

which produces unit plastic deformation along x and y-axes. ‘lhis plastic 
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deformation is easily determined from the geometric considerations taking 

into account the assumption (e), and it is 

E,PO = + rOp sin 20 = $ F (7) sin 20 

yxy~o = roP cos 20 = F(T) cos 20.1 
QPO = -&_&PO (3.7) 

‘lhe total plastic strain along the x, y-axes is found by sumning over 

all angles o where 7 satisfies all the above mentioned conditions. All 

admissible angles w are included between n/2 and - n/2. Since, however 

all plastic strains which occur as a result of the two perpendicular slips 

are equal, we can limit ourselves to the angles 0 < o< n/2, and then 

double the resultant values. Taking this circumstance into account and 

the second formula in (3.4) we have 

3”= I/;!)F(s)[ sin 2oi + cos 2oj] do (3.8) 

If an incremental load is added to some state of stress, then, using 

the analogous arguments, it can be shown that the corresponding plastic 

strain increments are determined by 

63P = r/z i F’ (7) dr [sin 26ji + cos 2(0j] do) (3.9) 

where 
F’(7) z ‘9 , 67 = ZS,, sin 20 + U,, cos 20 (3.10) 

Let us denote by p an angle formed by the vectors P and i, (Fig. 3), 
in the loading plane. Then 

i = pcosp-qsinp, j = psinp + qcos/il (3.11) 

s,, = + cos 8, S,, = +sin 17 

dS,,X = -$ sin (a - s), 6S,, = -E cos (CX - /?J) 
1/j 

In this new notation r and 6r are expressed as follows: 

7 = & p sin (/!!I + 20), 67 = -&- 60 cos(a - p - 261) (3.12) 

For simple loading /3 is constant. ‘Ihis is also true for all incre- 

mental loadings from some arbitrary state of stress. Thus, introducing 

the notation 

P+2w=&jh (3.13) 

and passing in (3.8) and (3.9) from unit vectors i and j to p and q, we 

obtain 
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3P= ~~SF(7)[pcosh_qqinX]dh 

63P = $ [ F’ (T) sin (cc - k) [p cos h - q sin h] dh 

(3,14) 

(3.15) 

Notice that (3.14) is valid for sinple loadings and (3.15) - always. 

In these formulas r = (p/t/2) cos A. Denoting as before [first formula 

in (2.3)], h = p cos A, and setting further 

F(T)== F (-+I =-+(h) (3.16) 

we obtain 

F’ (rf = q z.zz 

2 dx (h) 

=1/.27= 

2 dz (h) - = 2 (D(h) 
dh 

(3.17) 

The limits of integration in (3.14) and (3.15) are not determined. Let 
us find these limits for sinple loading followed by 

mental load. 

an additional incre- 

Fig. 3. 

Let some simple loading take place from the undeformed state. ‘Ibe first 

plastic deformations will appear when the maximum vplue of r = (p/\/2) 

cos X will reach some limiting value T s = p,/\/2, i.e. when 

P=jPI=P, (3.18) 

Thus, the initial yield curve in the loading plane beJongs to a family 

of circles with radius p,. With increasing ps plastic slips are spreading 
out in a pencil of lines. The limiting rays are determined by the condi- 

tion 

cos+ (3.19) 

Denoting by C# the angle formed by q with the nearest tangent fromp 
to the initial yield circle (Fig. 3), we obtain p,/p = CDS +, and con- 



1038 V.D. Kl iushnikov 

sequently, (3.19) means that 

,.=+y (3.20) 

Thus the limits of integration in (3.14) are determined by 

-y Y$ i% < cp (3.21) 

For simple loading the plastic strain vector must be directed along 
the constant vector p. To make (3.14) satisfy this condition it is 

necessary to assume that functions F(r ) and x(h) are even functions. It 
is easy to see that under this assumption (3.14), together with (3.16), 

determine the 3s -p curve for simple loadings, i.e. 

3P = 2 [ x (h) cos 1. dh (3.22) 
0 

If at the end of a simple loading some arbitrary small load is added, 

then the additional plastic slip can occur only along those directions 
where they had place at any previous instant, i.e. in the pencil (3.22), 

and only along those directions of the pencil, where SP > 0, i.e. where 
a 2 A, Consequently, if a is smaller than a minimum possible value of 

A= - +, then the so directed additional load is associated with elastic 

deformation only. ‘lhis means that at the end of a simple loading the yield 
curve forms an angle, the sides of which are touching the initial plasti- 
city circle (van Mises circle). Next, if a is limited by - 4t, < a < 4, 

then the pencil, in which the additional slips are taking place, and con- 

sequently the limits of integration in (3.22) are given by 

-cp%Sh<a (3.23) 

If a > 4, then plastic deformation will be in the whole pencil (3.21). 

Thus, for the relationships between an incremental loading from the 
end of some simple loading and the vector 83~ we have the same expressions 

as in the Sanders theory, [formulas (2.4) and (2.5), where 4 = +I .The 
only difference is that the vectors appearing in these formulas determine 
the stress-strain relationships for two-dimensional materials, If, as pre- 

viously, we will characterize the magnitude and position of the plasticity 
angle in an arbitrary state by the angles 4 and 0, then, in the general 

case, the additional loading from an arbitrary state will have the form 

given by (2.4) and (2.5), and conditions (1.1) wiIl be replaced by (1.2). 

‘The values of 4 and $ in these formulas have to be considered as deter- 

mined. Besides, the explicit formulas found for the variation of 4 and tj 
for simple loadings by the external tangents method suggest that a similar 
method may be applicable for a wider class of loading paths. 

We shall now make an assumption (mentioned in the introduction) that 
the relationships obtained above are also valid for a three-dimensional 
body under plane loading. This means that we will consider the vectors 
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entering into these relationships as being in a nine-dimensional vector 
space of real materials. Since exactly the same relationships were ob- 
tained in this case as those found at the beginning of this paper (this 
fact will be demonstrated below), we have some reason to expect that the 
stress-strain relationships for the class of the loadings considered 
here, are either a direct consequence of the initial system of the 
assumptions, or are sufficiently close to it. ‘llu~~,, most probably, at least 
for an additional loading at the end of simple loading, the conclusions 
of the slip theory will agree with the Sanders theory. 

We will now show how from (2.4) and (2.5) for + = I/I, ib = x’ and from 
(3.22) the results mentioned in the introduction follow. If the additional 
loading at the end of simple loading has the components Sop = So cos a 
along q, then the associated plastic strain increments have also a com- 
ponent 63,P in the same direction, whereby 

83,P 

60, = - 

Since 

1 * 
- 
cos a s 

x’ (h) sin (a - h) sin h dh 

-9 

1 X’(h) =dX = ___ dx (h) 

then integrating (3.24) by 

dh p sin h dh 

parts, we obtain 

(3.24) 

(3.25) 

83,” 

% 
(3.26) 

If K = c$ (the additonal loading being directed into the interior of 
the angle a >, c$), then the first bracket and the first term of the second 
bracket are equal to zero. This is so because x(h) = x (p cos h ) is an 
even function and x (p cos +)= x (p,) = 0. 

If K = 0 (an orthogonal additional load a = O), then the terms in.the 
first bracket reduce to zero, as well as the first term of the second 
bracket, since fo X = C#J, x = 0, and for h = 0, sin X = 0, 

Because of all this and (3.22) we have 

13,p 3P 
-=-p for x =‘p, 

83qP 1 3p _ 
%I % =T-T- 

for x=0 (3.27) 

Suppose that, b f e ore an additional load is applied, a body is subjected 
to simple tension (compression), then 
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Consequent 1 y 

9p 3 cl” 3 _=--=--_- 
P 2 T-c 2 (k-&j 

(3.2tq 

If the additional load is tension (compression) and twist, then 

Since Gi = 6r zr/S y,,, then 

Gi = 
c 

1 + c (SYxvP/ ST,y) 

These results completely coincide 

introduction. It is also easy to see 

with the results described in the 

that the initial yield curve in the 

ellipse. The sides of the plasticity ux r plane will be the von hlises 

angle $:I1 touch this yield curve for the point of the additional load- 

ing uX. 

(3.29) 

4. Rabotnov's model which illustrates strain hardening pro- 
perties of materials. 'Ihe phenomena which take place in strain hard- 

ening materials may he possibly investigated qualitatively using some 

models, in particular, using an example of pure bending of thin-walled 

cylinder of elasto-ideally plastic material. 

Denoting 

(4.1) 

(R is the diameter; t - the thickness; hf h! , K , K - moments and 

curvatures in the perpendicular planes p&.&g t irough the axis of the r 

cylinder, i, j are unit vectors) we can represent the results of the in- 

vestigations in [ 4 I in the following way. 

If we consider the vector M as being analogous to the stress vector 

P, and the vector N analogous to the strain vector 3, then the initial 

yield curve in this case will be a circle with radius R. In the elastic 

material 

P = n3 (4.21 

In the process of simple loading the yield curve is changing so that 

at the end of the vector P it forms a symmetrical angle. The magnitude 

of this angle is given by 

PC7 cos 4, 

P - = 1 - (29 - sin 29)/x (4.3) 

For an additional loading at the end of simple loading for a > w, 
where o is given by 
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tgw = s-22p-sin2q2 

7~--22tp + sin@ tgy 

the relationship between f' and is given by the usual ~~ncky-Nadai theory, 

where the elastic and secant moduli satisfy 

E=x, Es= n-2q+sin2p (4.5) 

In this work, the relationship between 6P and for additional load- 

ing in directions 

is found. 

It is interesting to note the following circumstance. If N is analogous 
to P, and N n - hi to 3~, then it is easy to verify that during the addi- 
tional loading at the end of a simple loading (1.2) is valid, where 

A = p, = 1 and (f, is constructed by the exterior tangents method. It is 

also easy to show that for the additional load from any state of stress 

formulas (1.21 are valid, where d, and I/I have to be considered as deter- 

mined. The investigations of the dependence of q5 and I) on the loading 

path is somewhat complicated, as it was for the case considered in the 

previous section. We think, however, that the exterior tangents method 

should be also applicable in this case. 

On the basis of the above, the following conclusions can be made. 

(a) For an additional loading at the end of sinrple loading the 

Batdorf-Budiansky and Sanders theories coincide. This similarity is ex- 

pected to exist for a broader class of loading paths. 

(bl For plane loading paths and with condition (1.11 the resulting 

relations obtained from these two theories appear to be a special case 

of (1.21. 

(cl If in Rahotnov's model we will consider the vector NV- M to be 
analogous to the plastic strain vector and the vector N to the stress 
vector, then the resulting relations appear to be also a special case of 

(1.21. 

(dl It was shown in f3 f that the second expression in (1.21, for 

+= Q and with the assumption of the applicability of the exterior tan- 

gents method, is identical with the Hencky-Nadai deformation theory. 

Thus, for an additional loading at the end of a simple loading, the 

Batdorf-Rudiansky theory, Sanders theory and the resulting relations in 

Rabotnov's model coincide with the Hencky-Nadai theory for cz >/ (s, If one 

succeeds to show the validity of the exterior tangents method for arbi- 

trary loading paths in the Batdorf-Budiansky theory and for Rabotnov's 
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model, (which seems to be very probable), then for all these theories one 

can prove the same as it was proved for the Sanders theory, viz. that 

they coincide with the Hencky-Nadai theory for the additional loads a > q5 
from an arbitrary state of stress in which q5 = 1). 

Quite instructional appears to be the fact that the old deformation 

theory, whose shortcomings under the conditions of the smoothness of the 

yield surface made it physically unreliable and thus had a consider- 
able influence on the development of new approaches, precisely from the 

point of view of new concepts finds its place in the system of general 

relationships of plasticity. 

BIBLIOGRAPHY 

1. Batdorf, I.B. and Budiansky, B.A., A Matheaatical Theory of Plasticity 

based on the Concept of slip. NACA TN 1871, April 1949. 

2. Sanders, I. L., Plastic stress-strain relations based on linear load- 

ing functions. Proc. Second U.S. Nat. Congr. of Appl. Mech., 

pp. 455-460, 1954. (russk. per.: Sanders Sootnosheniia mezhdu napri- 

azheniiami i deformatsiiami plasticheskoi oblasti, osnovannye na 

lineinykh funktsiiakh nagruzheniia. Sb. per. Mekhanika. No. 3, 

1956). 

3. Kliushnikov, V. D. , 0 postroenii teorii plastichnosti (On the Establish- 

ment of the Theory of Plasticity). PMM Vol. 23, NO. 2, 1959. 

4. Rabotnov, Iu. N. , Model’ , illiustriruiushchaia nekotorye svoistva 

uprochniaiushchego plasticheskogo tela (A model which illustrates 
some properties of a strain hardening plastic body). PMM Vol. 23, 

No. 1, 1959. 

5. Cicala, P., Sulle’deformazione plasteiche. Acad. Naz. dei Lincei, 

Roma, Rendiconti, v. 5, fast, 6, 1950. 

Translated by R.M. E.-I. 


